
Tetrahedron Letters 47 (2006) 2323–2325
Regioselective synthesis of N-acetylureas by manganese(III)
acetate reaction of 1,3-disubstituted thioureas
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Abstract—Reactions of asymmetrical 1,3-disubstituted thioureas with manganese(III) acetate produce regioselective N-acetylureas.
A mechanism for this novel transformation is proposed.
� 2006 Elsevier Ltd. All rights reserved.
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Since Bush and Finkbeiner’s pioneering work reported
three decades ago,1 manganese(III)-based oxidative free
radical reaction has become a powerful synthetic
method.2 One of the important applications of manga-
nese(III) reagent is for acetylations. For example,
Mn(OAc)3 can be used for enantioselective acylation
of a,b-unsaturated ketones3 and acetoxylation of fuller-
ene derivatives.4 However, to the best of our knowledge,
no such reagent has ever been used for N-acetylation
reactions. We report here the first example of
Mn(OAc)3-promoted regioselective N-acetylation of 1,3-
disubstituted thioureas in the synthesis of N-acetyl-
ureas.

Ureas and thioureas are useful synthons for the con-
struction of heterocyclic compounds.5 N-acylureas have
important agrochemical6 and pharmaceutical applica-
tions.7 Dopamine D2 agonist Cabergoline, for example,
has been used for the treatment of Parkinson’s disease.8

For the synthesis of N-acylureas,9 direct acylation of
symmetrical ureas10 or carbodiimides11 is an efficient
approach. However, because the reactions are not regio-
selective, only symmetrical ureas or carbodiimides pro-
duce single products.12 The Mn(OAc)3-mediated N-
acetylation reactions described in this letter can be used
to produce single N-acetylureas from symmetrical or
asymmetrical thioureas bearing aryl and alkyl groups.
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We first attempted the acetylation using equimolar
amount of Mn(OAc)3Æ2H2O and 1,3-di-p-tolylthiourea
1b in MeCN. The 1-acetyl-1,3-di-p-tolylurea 2b was gen-
erated in 10% yield. At a 2:1 molar ratio of Mn(OAc)3Æ
2H2O to 1b, the yield of 2b was improved to 66%
(Scheme 1). Reactions in different solvents (CH2Cl2,
EtOH, MeOH, and AcOH) and at different tempera-
tures were also attempted, but no further yield improve-
ment was observed. The structure of compound 2b
(R = p-tolyl) was confirmed by X-ray crystallography
analysis (Fig. 1).

Under the optimized conditions using 2 equiv of
Mn(OAc)3Æ2H2O and MeCN as a solvent, reactions of
symmetrical 1,3-diarylthioureas were performed and
results are listed in Table 1.13 It was found that 1,3-
diarylthioureas afforded N-acetylated products in good
to excellent yields (Table 1, entries 1–10). In contrast,
only trace amount of product was detected from reac-
tions of 1,3-dialkylthioureas (Table 1, entries 11–12).

Asymmetrical 1,3-disubstituted thioureas 314 were
used to study the regioselectivity of acetylation
reactions (Table 2). We found that reactions of
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Figure 1. X-ray crystal structure of compound 2b.

Table 2. Acetylation of asymmetrical disubstituted thioureas 3a–k
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R1 = aryl;  R2 = alkyl

Entry Product R1 R2 Yielda (%)

1 4a Ph Cyclohexyl 68
2 4b o-MeC6H4 Cyclohexyl 60
3 4c m-MeC6H4 Cyclohexyl 62
4 4d p-ClC6H4 Cyclohexyl 73
5 4e p-IC6H4 Cyclohexyl 64
6 4f Ph Cyclopentyl 65
7 4g p-MeC6H4 Cyclopentyl 59
8 4h m-MeC6H4 Cyclopentyl 60
9 4i p-ClC6H4 Cyclopentyl 71

10 4j p-IC6H4 Cyclopentyl 64
11 4k Ph Propyl 59

a After flash column chromatography.

Table 1. Acetylation of disubstituted thioureas 1a–l
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Mn(OAc)3.2H2O

CH3CN, reflux
3 h

2a-l

Entry Product R Yielda (%)

1 2a Ph 72
2 2b p-MeC6H4 66
3 2c o-MeC6H4 63
4 2d m-MeC6H4 76
5 2e p-MeOC6H4 63
6 2f p-ClC6H4 86
7 2g o-ClC6H4 76
8 2h p-BrC6H4 88
9 2i m-BrC6H4 69

10 2j p-IC6H4 52
11 2k Benzyl Trace
12 2l Cyclohexyl Trace

a After flash column chromatography.
Figure 2. X-ray crystal structure of compound 4e.
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Scheme 2. Proposed mechanism for N-acetylation.
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1-aryl-3-alkylthioureas had similar or slightly lower
yields than those of symmetrical 1,3-diarylthioureas,
and only single regioisomer was isolated from reactions
of asymmetrical 1,3-disubstituted thioureas. The struc-
ture of product 4e was confirmed by X-ray crystallogra-
phy analysis (Fig. 2).

A possible mechanism for the regioselective N-acetyla-
tion is proposed in Scheme 2. 1-Aryl-3-alkylthiourea 3
can exist as isothioureas 5 or 6, in which 5 is more stable.
Compound 5 reacts with Mn(OAc)3 to produce 7. The
oxygen attack followed by the fragmentation of Mn(II)
and release of H2S15 produces 8. This compound under-
goes O!N acyl migration16 to give N-acetylurea 4. The
aryl group is needed to promote the acetylation of 7.
This mechanism explains why yields from reactions of
1,3-diarylthioureas were slightly higher than that of 1-
aryl-3-alkylthioureas, and why it was difficult to acetyl-
ate 1,3-dialkylthioureas.

In summary, Mn(III)-mediated N-acetylation of 1,3-
disubstituted thioureas has been developed for regio-
selective synthesis of N-acetylureas. The reaction can
be performed under mild conditions and give products
in good yields.
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